sábado, 26 de marzo de 2011

En química orgánica, los grupos funcionales son estructuras submoleculares, caracterizadas por una conectividad y composición elemental específica que confiere reactividad a la molécula que los contiene. Estas estructuras reemplazan a los átomos de hidrógeno perdidos por las cadenas hidrocarbonadas saturadas. Los grupos alifáticos, o de cadena abierta, suelen ser representados genéricamente por R (radicales alquílicos), mientras que los aromáticos, o derivados del benceno, son representados por Ar (radicales arílicos). Los grupos funcionales confieren una reactividad química específica a las moléculas en las que están presentes.
 Los compuestos orgánicos son sustancias químicas basadas en cadenas de carbono e hidrógeno. En muchos casos contienen oxígeno, y también nitrógeno, azufre, fósforo, boro y halógenos. No son moléculas orgánicas los carburos, los carbonatos y los óxidos de carbono.

Las moléculas orgánicas pueden ser de dos tipos:

Moléculas orgánicas naturales: Son las sintetizadas por los seres vivos, y se llaman biomoléculas, las cuales son estudiadas por la bioquímica.
Moléculas orgánicas artificiales: Son sustancias que no existen en la naturaleza y han sido fabricadas por el hombre como los plásticos.

El carbono es singularmente adecuado para este papel central, por el hecho de que es el átomo más liviano capaz de formar múltiples enlaces covalentes. A raíz de esta capacidad, el carbono puede combinarse con otros átomos de carbono y con átomos distintos para formar una gran variedad de cadenas fuertes y estables y de compuestos con forma de anillo. Las moléculas orgánicas derivan sus configuraciones tridimensionales primordialmente de sus esqueletos de carbono. Sin embargo, muchas de sus propiedades específicas dependen de grupos funcionales. Una característica general de todos los compuestos orgánicos es que liberan energía cuando se oxidan.

En los organismos se encuentran cuatro tipos diferentes de moléculas orgánicas en gran cantidad: carbohidratos, lípidos, proteínas y nucleótidos. Todas estas moléculas contienen carbono, hidrógeno y oxígeno. Además, las proteínas contienen nitrógeno y azufre, y los nucleótidos, así como algunos lípidos, contienen nitrógeno y fósforo.


http://es.answers.yahoo.com/question/index?qid=20080602114406AATVuVo



ALCANOS
Los alcanos son compuestos formados por carbono e hidrógeno que sólo contienen enlaces simples carbono – carbono. Cumplen la fórmula general CnH2n+2, donde n es el número de carbonos de la molécula.
Leer más...
 
Nomenclatura de alcanos Imprimir E-Mail
Ácido barbitúrico
Ácido barbitúrico
En los orígenes de la química, los compuestos orgánicos eran nombrados por sus descubridores.  La urea recibe este nombre por haber sido aislada de la orina.
El ácido barbitúrico fue descubierto por el químico alemán Adolf von Baeyer, en 1864.  Se especula que le dio este nombre en honor de una amiga llamada bárbara.

La ciencia química fue avanzando y el gran número de compuestos orgánicos descubiertos hicieron imprescindible el uso de una nomenclatura sistemática

http://www.quimicaorganica.org/alcanos-teoria/index.php


  alquinos
Los alquinos se nombran sustituyendo la terminación -ano del alcano por -ino. El alquino más pequeño es el etino o acetileno. Se elige como cadena principal la más larga que contenga el triple enlace y se numera de modo que este tome el localizador más bajo posible.
Estructura y enlace en alquinos
El triple enlace está compuesto por dos enlaces π perpendiculares entre si, formados por orbitales p no hibridados y un enlace sigma formado por hibridos sp.

AlcoholesAlcoholes
 
Tipo de átomos
Suffijo
-ol
Prefijo
hidroxi
Posición en la cadena
Cualquier lugar
Fórmula General 
CnH2n+2O
Nombre de la familia 
alcoholes


Una cetona es un compuesto orgánico caracterizado por poseer un grupo funcional carbonilo.[1] Cuando el grupo funcional carbonilo es el de mayor relevancia en dicho compuesto orgánico, las cetonas se nombran agregando el sufijo -ona al hidrocarburo del cual provienen (hexano, hexanona; heptano, heptanona; etc). También se puede nombrar posponiendo cetona a los radicales a los cuales está unido (por ejemplo: metilfenil cetona). Cuando el grupo carbonilo no es el grupo prioritario, se utiliza el prefijo oxo- (ejemplo: 2-oxopropanal).
 
Un ácido (del latín acidus, que significa agrio) es considerado tradicionalmente como cualquier compuesto químico que, cuando se disuelve en agua, produce una solución con una actividad de catión hidronio mayor que el agua pura, esto es, un pH menor que 7. Esto se aproxima a la definición moderna de Johannes Nicolaus Brønsted y Martin Lowry, quienes definieron independientemente un ácido como un compuesto que dona un catión hidrógeno (H+) a otro compuesto (denominado base). Algunos ejemplos comunes incluyen al ácido acético (en el vinagre), y el ácido sulfúrico (usado en baterías de automóvil). Los sistemas ácido/base son diferentes de las reacciones redox en que no hay un cambio en el estado de oxidación. Los ácidos pueden existir en forma de sólidos, líquidos o gases, dependiendo de la temperatura. También pueden existir como sustancias puras o en solución.

  • Las aminas son compuestos químicos orgánicos, que se consideran como derivados del amoniaco (NH3). Las aminas se clasifican como alquilsustituidas (alquilaminas) o arilsustituidas (arilaminas).
     
    Las aminas se clasifican como primarias (RNH2), secundarias (R2NH) y terciarias (R3N), según el número de sustituyentes orgánicos unidos al nitrógeno.
     
    También hay compuestos con un átomo de nitrógeno unido a cuatro grupos, llevando el átomo de nitrógeno una carga formal positiva, que se denominan sales de amonio cuaternarias.
     


Alquenos
Los alquenos son hidrocarburos que tienen un doble enlace carbono = carbono (C=C) en su estructura.
Nomenclatura de los Alquenos:
* La cadena principal es la que tiene mayor número de dobles enlaces.
* Se empiezan a contar los localizadores de forma que el número que asignemos al enlace sea el menor.
* Se nombran igual que los alcanos sustituyendo el sufijo -ano por -eno indicando el localizador del doble enlace

 

recapitulación

el día martes pasamos al pizarron a hacer un ejercicio sobre los compuestos del carbono y como eran sus enlaces, posteriormente realizamos una practica sobre la reaccion de la esterificacion y colocamos varias sustancias, entre ellas alcoholes en la capsula de porcelana revolviendo todas y finalmente las colocamos al fuego y observamos la reaccion que se producia.
el dia jueves pasamos nuevamente a realizar un ejercicio de los carbonos y sus enlaces y mas tarde hicimos su representacion fisica.

jueves










Semana 11.Martes 206 B.

Equipo
¿Qué determina las propiedades de los compuestos del carbono?
Enlaces del Carbono
1
Propiedades químicas
Los compuestos de carbono no tienen un carácter iónico; por ello, los enlaces tienen un marcado carácter covalente.
Los enlaces covalentes son enlaces bastante fuertes y difíciles de romper. Por este motivo, las reacciones en las que intervienen compuestos de carbono son, en general, lentas; y a menudo necesitan la presencia de catalizadores para que la reacción se produzca a un ritmo apreciable (y en muchos casos, elevadas temperaturas.)
Otra propiedad importantísima desde el punto de vista práctico es la capacidad energética de los hidrocarburos. En las reacciones de combustión se genera una gran cantidad de energía. Como productos de desecho se obtiene siempre dióxido de carbono y agua. Observa algunas reacciones:
  • Metano: CH4 + 2 O2 CO2 + 2 H2O + energía
  • Etano: 2 C2H6 + 7 O2 4 CO2 + 6 H2O + energía
  • Butano: 2 C4H10 + 13 O2 8 CO2 + 10 H2O + energía
El gas natural o el petróleo, por ejemplo, están formados por una mezcla de hidrocarburos.
Los electrones de valencia del carbono pueden alojarse en orbitales s y p que en determinados compuestos pueden formar orbitales híbridos. Es decir, los átomos de carbono pueden alojar sus electrones de valencia en orbitales diferentes de los que se usan cuando no se enlazan. Estos nuevos orbitales se denominan orbitales híbridos. 
Según el compuesto, un átomo de carbono puede tener: 
-     Cuatro orbitales híbridos formados por el orbital s y los tres p. Estos orbitales se denominan orbitales sp3, formarían un tetraedro con ángulos de 109,5º entre orbitales.
-     Tres orbitales híbridos formados por el orbital s y dos p. Estos orbitales se denominan orbitales sp2, se encuentran en el plano separados un ángulo de 120º. Quedaría un orbital p que sería perpendicular a los tres orbitales sp2.
-     Dos orbitales híbridos formados por el orbital s y un orbital p. Estos orbitales se denominan orbitales sp1, se encuentran en el plano separados un ángulo de 180º. Quedaría dos orbitales p que serían perpendiculares a los dos orbitales sp, y mutuamente perpendiculares entre sí. 
2
QUIMICA DE LOS COMPUESTOS DEL CARBONO
El átomo de carbono, debido a su configuración electrónica, presenta una importante capacidad de combinación. Los átomos de carbono pueden unirse entre sí formando estructuras complejas y enlazarse a átomos o grupos de átomos que confieren a las moléculas resultantes propiedades específicas. La enorme diversidad en los compuestos del carbono hace de su estudio químico una importante área del conocimiento puro y aplicado de la ciencia actual.
Durante mucho tiempo la materia constitutiva de los seres vivos estuvo rodeada de no pocas incógnitas. Frente a la materia mineral presentaba, entre otras, una característica singular, su capacidad de combustión. Parecía como si los únicos productos capaces de arder hubieran de proceder de la materia viviente. En los albores de la química como ciencia se advirtió, además, que si bien la materia procedente de organismos vivos podía degradarse en materia mineral por combustión u otros procesos químicos,no era posible de ninguna manera llevar a cabo en el laboratorio el proceso inverso.
Argumentos de este estilo llevaron a Berzelius, a comienzos del siglo XIX, a sugerir la existencia de dos tipos de materia en la naturaleza, la materia orgánica o materia propia de los seres vivos, y la materia inorgánica . Para justificar las diferencias entre ambas se admitió que la materia orgánica poseía una composición especial y que su formación era debida a la intervención de una influencia singular o «fuerza vital» exclusiva de los seres vivos y cuya manipulación no era posible en el laboratorio. La crisis de este planteamiento, denominado vitalismo, llevó consigo el rápido desarrollo de la química de la materia orgánica en los laboratorios, al margen de esa supuesta «fuerza vital».
En la actualidad, superada ya la vieja clasificación de Berzelius, se denomina química orgánica a la química de los derivados del carbono e incluye el estudio de los compuestos en los que dicho elemento constituye una parte esencial, aunque muchos de ellos no tengan relación alguna con la materia viviente.

El carbono forma enlaces consigo mismo, lo que se conoce como enlaces carbono-carbono, ya que el carbono es tetravalente, lo que le hace tener la posibilidad de formar enlaces con otros átomos de carbono y otros elementos, como por ejemplo el hidrógeno en el caso de los hidrocarburos.  Precisamente por la gran facilidad que posee el carbono de enlazarse entre sí formando cadenas, existen tantos tipos diferentes de hidrocarburos.
Los enlaces carbono-carbono, son enlaces de tipo covalente, que tienen lugar entre dos átomos de carbono. Existen enlaces simples, que generalmente son los más comunes, pues se encuentra formado por dos electrones, siendo cada uno de uno de los átomos que participan en el enlace. Los enlaces simples son de tipo sigma (enlace σ), siendo este el más fuerte de los enlaces covalentes, y se encuentran formados por un orbital híbrido de los átomos de carbono del enlace.

http://quimica.laguia2000.com/wp-content/uploads/2010/06/AMIN2.gif
3
http://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Electron_dot.svg/300px-Electron_dot.svg.png
http://bits.wikimedia.org/skins-1.17/common/images/magnify-clip.png
Ejemplo de enlaces químicos entre carbono C, hidrógeno H, y oxígeno O, representados según la estructura de Lewis. Los diagramas de punto representaron un intento temprano de describir los enlaces químicos, y aún son ampliamente usados hoy en día.

http://rabfis15.uco.es/weiqo/Tutorial_weiqo/Images/Fig2H12a2P1.gif
4
El carbono tiene propiedades químicas que lo hacen muy importante para los seres vivos. Por ejemplo, puede unir sus átomos para formar largas cadenas que, a su vez, son los componentes básicos de las sustancias orgánicas, como el caso de las proteínas, las grasas y los azúcares. El carbono es tan importante que hay una rama de la química que se encarga de estudiar los compuestos de cadenas largas y cortas que forma este elemento: la química orgánica. Todas las biomoléculas se basan en los átomos de carbono para formar su estructura.
El carbono (C) tiene 4 electrones en la capa de valencia. Por tanto va a formar siempre 4 enlaces covalentes.
Los enlaces pueden ser: simples, dobles y triples.El carbono puede unirse con otros carbonos formando de esta manera cadenas de compuestos carbonados.
El hidrógeno solo tiene un electrón formando un enlace covalente simple.
Los compuestos orgánicos se representan mediante una fórmula que puede ser empírica, molecular y estructural.
5
Los orgánicos se caracterizan porque en su composición interviene el carbono, además de otros
elementos. Los compuestos en cuya composición no aparece este elemento se llaman
inorgánicos. Hay algunas excepciones: por ejemplo, el dióxido de carbono (CO2) es un
compuesto inorgánico, aunque en su composición aparezca el carbono.
Los compuestos inorgánicos que están presentes en los seres vivos son el agua y las sales
minerales. Los orgánicos son los carbohidratos, los lípidos, las proteínas y los ácidos nucleicos.
Tanto las cosas como los seres vivos están formados por elementos químicos. Sin embargo, en
los seres vivos la organización, la disposición y combinación de sus moléculas dan como
resultado las propiedades y características por las cuales se manifiesta la vida

El enlace carbono-hidrógeno, representado por C-H, es un enlace covalente sencillo entre un átomo de carbono y otro de hidrógeno, que se encuentra sobre todo en compuestos orgánicos, en los que es muy abundante

Un enlace carbono-carbono es un enlace covalente entre dos átomos de carbono.[1] La forma más común es el enlace simple - un enlace compuesto por dos electrones, uno de cada uno de los dos átomos. El enlace simple carbono-carbono es un enlace sigma y se forma entre un orbital híbrido de cada uno de los átomos de carbono
Las ramificaciones son comunes en los esqueletos C-C. Pueden ser identificados átomos de carbono diferentes con respecto al número de otros átomos de carbono vecinos:
  • átomo de carbono primario: un átomo de carbono vecino
  • átomo de carbono secundario: dos átomos de carbono vecinos
  • átomo de carbono terciario: tres átomos de carbono vecinos
  • átomo de carbono cuaternario: cuatro átomos de carbono vecinos

6
El átomo de carbono constituye el elemento esencial de toda la química orgánica, y dado que las propiedades químicas de elementos y compuestos son consecuencia de las características electrónicas de sus átomos y de sus moléculas, es necesario considerar la configuración electrónica del átomo de carbono para poder comprender su singular comportamiento químico.
Se trata del elemento de número atómico Z= 6. Por tal motivo su configuración electrónica en el estado fundamental o no excitado es 1 s ² 2 s ² 2 p ². La existencia de cuatro electrones en la última capa sugiere la posibilidad bien de ganar otros cuatro convirtiéndose en el ion C4- cuya configuración electrónica coincide con la del gas noble Ne, bien de perderlos pasando a ion C4+ de configuración electrónica idéntica a la del He. En realidad una pérdida o ganancia de un número tan elevado de electrones indica una dosis de energía elevada, y el átomo de carbono opta por compartir sus cuatro electrones externos con otros átomos mediante enlaces covalentes. Esa cuádruple posibilidad de enlace que presenta el átomo de carbono se denomina tetravalencia.
Los cuatro enlaces del carbono se orientan simétricamente en el espacio de modo que considerando su núcleo situado en el centro de un tetraedro, los enlaces están dirigidos a lo largo de las líneas que unen dicho punto con cada uno de sus vértices. La formación de enlaces covalentes puede explicarse, recurriendo al modelo atómico de la mecánica cuántica, como debida a la superposición de orbitales o nubes electrónicas correspondientes a dos átomos iguales o diferentes. Así, en la molécula de metano CH4(combustible gaseoso que constituye el principal componente del gas natural), los dos electrones internos del átomo de C, en su movimiento en torno al núcleo, dan lugar a una nube esférica que no participa en los fenómenos de enlace; es una nube pasiva . Sin embargo, los cuatro electrones externos de dicho átomo se mueven en el espacio formando una nube activa de cuatro lóbulos principales dirigidos hacia los vértices de un tetraedro y que pueden participar en la formación del enlace químico. Cuando las nubes electrónicas de los cuatro átomos de hidrógeno se acercan suficientemente al átomo de carbono, se superponen o solapan con los lóbulos componentes de su nube activa, dando lugar a esa situación favorable energéticamente que denominamos enlace.
Todos los enlaces C —H en el metano tienen la misma longitud 1,06 Å (1 Å == 10-10 m) y forman entre, sí ángulos iguales de 109°. Tal situación define la geometría tetraédrica característica de los enlaces del carbono. La propiedad que presentan los átomos de carbono de unirse de forma muy estable no sólo con otros átomos,sino también entre sí a través de enlaces C — C, abre una enorme cantidad de posibilidades en la formación de moléculas de las más diversas geometrías, en forma de cadenas lineales,cadenas cíclicas o incluso redes cúbicas. Este es el secreto tanto de la diversidad de compuestos orgánicos como de su elevado número.




Esterificación

Se denomina esterificación al proceso por el cual se sintetiza un éster. Un éster es un compuesto derivado formalmente de la reacción química entre un ácido carboxílico y un alcohol.
Comúnmente cuando se habla de ésteres se hace alusión a los ésteres de ácidos carboxílicos, substancias cuya estructura es R-COOR', donde R y R' son grupos alquilo. Sin embargo, se pueden formar en principio ésteres de prácticamente todos los oxácidos inorgánicos
Archivo:Ester-from-acid-and-alcohol-2D-skeletal.png
Archivo:Esterification.PNG
EXPERIMENTO DE LA REACCION DE ESTERIFICACION
Material: Capsula de porcelana, agitador de vidrio, lámpara de alcohol, tripie, rejilla de alambre con asbesto.
Sustancias: alcohol metanol, alcohol etanol, formol, acido acético o etanoico, acetona, acido sulfúrico.
Procedimiento:
Colocar en la capsula de porcelana una muestra (un mililitro) de cada sustancia, detectar sus propiedades organolépticas.
Colocar en la capsula de porcelana tres mililitros de acido acético y agregar tres  mililitros de etanol, adicionar cinco gotas del acido sulfúrico (Con mucho cuidado), agitar y calentar la mezcla hasta ebullicon.Detectar el olor desprendido.
Observaciones:

sustanciaformulaolorcolorforma
metanol
etanol
formol
acetona
Mezcla acido y alcohol

Conclusiones:
LOCALIZAR LOS ESTERES  SUS OLORES Y FORMULAS.